

CS-570 Statistical Signal Processing

Lecture 6: Signal Representation (part b)

Spring Semester 2019

Grigorios Tsagkatakis

Today's Objectives

Topics:

- Fourier and Wavelet Transform
- Sparsity and Dictionary Learning

Disclaimer: Material used:

Zhang, Zheng, et al. "A survey of sparse representation: algorithms and applications." *IEEE access* 3 (2015): 490-530.

Wavelets

- Wavelet transform decomposes a signal into a set of basis functions.
- These basis functions are called *wavelets*
- Wavelets are obtained from a single prototype wavelet $\psi(t)$ called mother wavelet by dilations and shifting:

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}}\psi(\frac{t-b}{a})$$

where *a* is the scaling parameter and *b* is the shifting parameter

Mother Wavelet examples

Mexican hat

negative normalized second derivative of a Gaussian function

$$\psi(t) = \frac{2}{\sqrt{3\sigma}\pi^{1/4}} \left(1 - \left(\frac{t}{\sigma}\right)^2 \right) e^{-\frac{t^2}{2\sigma^2}}$$

DWT matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Discrete Wavelet Transform (DWT)

• Forward
$$a_{jk} = \sum_{t} f(t) \psi_{jk}^{*}(t)$$

• Inverse
$$f(t) = \sum_{k} \sum_{j} a_{jk} \psi_{jk}(t)$$

Where
$$\psi_{jk}(t) = 2^{j/2} \psi \left(2^{j} t - k \right)$$

١

Multiresolution Representation Using Wavelets

Spring Semester 2019

DWT in images

Spring Semester 2019

The sparsity revolution

• Solve y = Dx or $\min_{x} |y - Dx|_{2}$

Cases

- D = DFT matrix
- D = DCT matrix
- D = DWT matrix
- D something else?

Sparsity

• The concept that most signals in our natural world are sparse

- a. Original image
- c. Image reconstructed by discarding the zero coefficients

Image

Wavelet transform

Sparse

Multiscale

Sparse representations framework

• Key idea $\min \|\mathbf{y} - \mathbf{D}\mathbf{x}\|_2$ s.t. $\|\mathbf{x}\|_0 \le K$

• *Sparseland* model: every signal can be described as a linear combination of few atoms

Sparsity

D is adapted to x if it can represent it with a few basis vectors(called atoms) - that is, there exists a sparse vector α in \mathbb{R}^p such that $D\alpha \approx x$. We call α the sparse code.

Theoretical model

Find $\boldsymbol{x} \in \mathbb{C}^p$ s.t. $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{y}$

where $oldsymbol{A} = [oldsymbol{a}_1, \cdots, oldsymbol{a}_p] \in \mathbb{C}^{n imes p}$ obeys

- \bullet underdetermined system: n < p
- full-rank: rank(A) = n
- A: an over-complete basis / dictionary; a_i : atom; x: representation in this basis / dictionary

Motivation

- Signal Transform: Given the signal, its sparsest (overcomplete) representation x is its forward transform. Consider this for compression, feature extraction, analysis/synthesis of signals, ...
- Signal Prior: in inverse problems seek a solution that has a sparse representation over a predetermined dictionary, and this way regularize the problem (just as TV, bilateral, Beltrami flow, wavelet, and other priors are used).

Sparse coding

General framework $\min_{\mathbf{x}} \|\mathbf{x}\|_0$ s.t. $\|\mathbf{y} - \mathbf{Dx}\|_2 \le \varepsilon$ • Challenge: finding $|\mathbf{x}|_0$ is NP hard

 $N \times N$

Sparse coding

General framework $\min_{\mathbf{x}} \|\mathbf{x}\|_0$ s.t. $\|\mathbf{y} - \mathbf{D}\mathbf{x}\|_2 \le \varepsilon$ • Challenge: finding $\|\mathbf{x}\|_0$ is NP hard

 $M \times N$

Solution approaches

Spring Semester 2019

Relaxation

Spring Semester 2019

Relaxation

• Replace I_0 with I_1

$$\boldsymbol{x}^{***} = \arg\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_{1} = \sum_{n=1}^{N} |x^{(n)}|, \text{ s.t. } (A\boldsymbol{x} - \boldsymbol{b})^{2} = 0$$
$$\boldsymbol{x}^{***} = \boldsymbol{x}^{*}$$

The geometry of the solutions of different norm regularization in 2-D space

Spring Semester 2019

L₁ minimization formulations

Regularize with approximation error

- Noise free case $\hat{\boldsymbol{\alpha}} = \arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_1$ s.t. $\boldsymbol{y} = X\boldsymbol{\alpha}$
- Noisy case $\hat{\boldsymbol{\alpha}} = \arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_1$ s.t. $\|\boldsymbol{y} X\boldsymbol{\alpha}\|_2^2 \leq \varepsilon$

Regularize with sparsity

• Noise free case $\hat{\boldsymbol{\alpha}} = \arg\min_{\boldsymbol{\alpha}} \|\boldsymbol{y} - X\boldsymbol{\alpha}\|_2^2 \quad s.t. \quad \|\boldsymbol{\alpha}\|_1 \leq \tau$

Lagrangian formulation

$$\hat{\boldsymbol{\alpha}} = L(\boldsymbol{\alpha}, \lambda) = \arg\min_{\boldsymbol{\alpha}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\alpha}\|_{2}^{2} + \lambda \|\boldsymbol{\alpha}\|_{1}$$

Motivation

- Nature of *H*
 - Convex
 - Differentiable
 - $\nabla H(x') = D^T (Dx' y)$
- Basic Intuition
 - Take an arbitrary x'
 - Calculate $x' \tau \nabla H(x')$
 - Use the <u>shrinkage</u> operator
 - Make corrections and iterate

Shrinkage operator

We define the shrinkage operator as follows

shrink(x,
$$\alpha$$
) =

$$\begin{cases}
x - \alpha & \text{if } \alpha < x \\
0 & \text{if } -\alpha \le x \le \alpha \\
x + \alpha & \text{if } x < -\alpha
\end{cases}$$

Basis pursuit

Input: Matrix Φ , Signal measurement y, parameter sequence μ_n

Output: Signal estimate \hat{x}

Initialization: $\hat{x}_0=0$, r=y, k=0

Algorithm 1 Signal estimate
$$\hat{x}$$

while Halting Criterion is false do
 $k \leftarrow k + 1$
 $x \leftarrow \hat{x} - \tau \Phi^T r$
 $\hat{x} \leftarrow \text{shrink}(x, \mu_k \tau)$
 $r \leftarrow y - \Phi \hat{x}$
end while
return \hat{x}

Basis-Pursuit Success

Theorem: Given a noisy signal $y = \mathbf{D}\alpha + v$ where $||v||_2 \le \epsilon$ and α is sufficiently sparse,

then Basis-Pursuit: $\min_{\alpha} \|\alpha\|_1$ s.t. $\|\mathbf{D}\alpha - y\|_2 \le \varepsilon$ leads to a stable result: $\|\widehat{\alpha} - \alpha\|_2^2 \le \frac{4\varepsilon^2}{1 - \mu(4\|\alpha\|_0 - 1)}$

The Mutual Coherence $\mu(\mathbf{D})$ is the largest off-diagonal entry in absolute value

Alternating direction method of multipliers (ADMM)

Original problem $\hat{\alpha} = L(\alpha, \lambda) = \arg \min_{\alpha} \frac{1}{2} \|y - X\alpha\|_2^2 + \tau \|\alpha\|_1$

Introduce auxiliary variable s

$$\arg\min_{\boldsymbol{\alpha},s} \frac{1}{2\tau} \|\boldsymbol{s}\|_2 + \|\boldsymbol{\alpha}\|_1 \quad s.t. \quad \boldsymbol{s} = \boldsymbol{y} - X\boldsymbol{\alpha}$$

➢Form the Augmented Lagrangian function

$$\arg\min_{\boldsymbol{\alpha},\boldsymbol{s},\lambda} L(\boldsymbol{\alpha},\boldsymbol{s},\boldsymbol{\lambda}) = \frac{1}{2\tau} \|\boldsymbol{s}\|_2 + \|\boldsymbol{\alpha}\|_1 - \lambda^T (\boldsymbol{s} + X\boldsymbol{\alpha} - \boldsymbol{y}) + \frac{\mu}{2} \|\boldsymbol{s} + X\boldsymbol{\alpha} - \boldsymbol{y}\|_2^2$$

Where λ is the Lagrange multiplier vector and μ is a penalty paramter

Alternating direction method of multipliers (ADMM)

• General ADMM framework

$$\begin{aligned} \mathbf{s}^{t+1} &= \arg\min L(\mathbf{s}, \boldsymbol{\alpha}^{t}, \boldsymbol{\lambda}^{t}) \\ \boldsymbol{\alpha}^{t+1} &= \arg\min L(\mathbf{s}^{t+1}, \boldsymbol{\alpha}, \boldsymbol{\lambda}^{t}) \\ \boldsymbol{\lambda}^{t+1} &= \boldsymbol{\lambda}^{t} - \mu(\mathbf{s}^{t+1} + X\boldsymbol{\alpha}^{t+1} - \boldsymbol{y}) \end{aligned}$$

Spring Semester 2019

ADMM step 1

$$\arg\min L_{\boldsymbol{s}}(\boldsymbol{s}, \boldsymbol{\alpha}^{t}, \boldsymbol{\lambda}^{t}) = \frac{1}{2\tau} \|\boldsymbol{s}\|_{2} + \|\boldsymbol{\alpha}^{t}\|_{1} - (\boldsymbol{\lambda}^{t})^{T} (\boldsymbol{s} + X \boldsymbol{\alpha}^{t} - \boldsymbol{y}) - \boldsymbol{y}) + \frac{\mu}{2} \|\boldsymbol{s} + X \boldsymbol{\alpha}^{t} - \boldsymbol{y}\|_{2}^{2}$$
$$= \frac{1}{2\tau} \|\boldsymbol{s}\|_{2} - (\boldsymbol{\lambda}^{t})^{T} \boldsymbol{s} + \frac{\mu}{2} \|\boldsymbol{s} + X \boldsymbol{\alpha}^{t} - \boldsymbol{y}\|_{2}^{2} + \|\boldsymbol{\alpha}^{t}\|_{1} - (\boldsymbol{\lambda}^{t})^{T} (X \boldsymbol{\alpha}^{t} - \boldsymbol{y})$$

$$s^{t+1} = \frac{\tau}{1+\mu\tau} (\boldsymbol{\lambda}^t - \mu(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\alpha}^t))$$

Spring Semester 2019

$$\arg\min L_{\boldsymbol{\alpha}}(\boldsymbol{s}^{t+1}, \boldsymbol{\alpha}, \lambda^{t}) = \frac{1}{2\tau} \|\boldsymbol{s}^{t+1}\|_{2} + \|\boldsymbol{\alpha}\|_{1} - (\boldsymbol{\lambda})^{T} (\boldsymbol{s}^{t+1} + X\boldsymbol{\alpha} - \boldsymbol{y}) + \frac{\mu}{2} \|\boldsymbol{s}^{t+1} + X\boldsymbol{\alpha} - \boldsymbol{y}\|_{2}^{2}$$

$$\boldsymbol{\alpha}^{t+1} = soft\{\boldsymbol{\alpha}^t - \tau X^T(\boldsymbol{s}^{t+1} + X\boldsymbol{\alpha}^t - \boldsymbol{y} - \boldsymbol{\lambda}^t/\mu), \frac{\tau}{\mu}\}$$
$$soft(\sigma, \eta) = sign(\sigma) \max\{|\sigma| - \eta, 0\}$$

ADMM step 3

• Update Lagrangian parameter $oldsymbol{\lambda}^{t+1} = oldsymbol{\lambda}^t - \mu(oldsymbol{s}^{t+1} + Xoldsymbol{lpha}^{t+1} - oldsymbol{y})$

Algorithm 4. Alternating direction method (ADM) based sparse representation strategy Task: To address the unconstraint problem: $\hat{\alpha} = \arg\min_{\alpha} \frac{1}{2} \|y - X\alpha\|_2^2 + \tau \|\alpha\|_1$ Input: Probe sample y, the measurement matrix X, small constant λ Initialization: t = 0, $s^0 = 0$, $\alpha^0 = 0$, $\lambda^0 = 0$, $\tau = 1.01$, μ is a small constant Step 1: Construct the constraint optimization problem of problem III.12 by introducing the auxiliary parameter and its augmented Lagrangian function, i.e. problem (V.22) and (V.23). While not converged do Step 2: Update the value of the s^{t+1} by using Eq. (V.25). Step 2: Update the value of the α^{t+1} by using Eq. (V.29). Step 3: Update the value of the λ^{t+1} by using Eq. (V.24(c)). Step 4: $\mu^{t+1} = \tau \mu^t$ and t = t + 1. End While Output: α^{t+1}

Matching Pursuit Algorithms

- The MP is a greedy algorithm that finds one atom at a time.
- Step 1: find the one atom that best matches the signal.
- Next steps: given the previously found atoms, find the next <u>one</u> to best fit ...
- Repeat step 1 until convergence.

 \equiv

Spring Semester 2019

Spring Semester 2019

Matching Pursuit Algorithms

Algorithm 1 Greedy Matching Pursuit Algorithm

```
Input: Dictionary D, input signal x
Output: Sparse presentation vector \alpha
Initialization:
R \leftarrow x
n \leftarrow 1
while R_{n+1} > threshold do
    Find atom g_j with maximum inner product | \langle R_n, g_j \rangle |
    \alpha_i \leftarrow < R_n, g_j > /||g_j||^2
    R_{n+1} \leftarrow R_n - \alpha_i q_i
    n \leftarrow n+1
end while
end
```

Spring Semester 2019

Matching Pursuit Algorithms

$$\underset{\mathbf{D},\mathbf{A}}{Min} \sum_{j=1}^{P} \left\| \mathbf{D}\underline{\alpha}_{j} - \underline{x}_{j} \right\|_{2}^{2} \quad s.t. \; \forall j, \left\| \underline{\alpha}_{j} \right\|_{0} \leq L$$

Each example is a linear combination of atoms from D Each example has a sparse representation with no more than L atoms

Sparse Signal Modeling

Key idea $\min \|\mathbf{y} - \mathbf{Ds}\|_2 \quad \text{s.t.} \quad \|\mathbf{s}\|_0 \leq K$ Dictionary learning $\operatorname{Greedy} \quad \|\mathbf{s}\|_1$

Signal Processing

- Super resolution
- Denoising

Enhancing

Spring Semester 2019

Demosaicing

$$\begin{split} \min \|\mathbf{Y} - \mathbf{DS}\|_F\\ \text{s.t.} \ \|\mathbf{S}_i\|_1 \leq K, \|\mathbf{D}_i\|_2 \leq 1\\ \text{K-SVD} \end{split}$$

43

nstitute of Computer Science

- **Computer Vision**
- Image classification
- Object detection
- Tracking